Новый вычислительный фреймворк ускоряет разработку наноносителей для терапевтической РНК

/ НаукаНовости / Наука

Исследовательская группа под руководством профессора Оливии Меркель, заведующей кафедрой доставки лекарств в Мюнхенском университете имени Людвига-Максимилиана, представила первую интегрированную платформу для поиска новых полимерных материалов для доставки терапевтической РНК. Инструмент сочетает молекулярно-динамическое моделирование и машинное обучение.

Графическая аннотация. Автор: Journal of the American Chemical Society (2025). DOI: 10.1021/jacs.5c12694

Исследование, опубликованное в Journal of the American Chemical Society, представляет вычислительный инструмент под названием Bits2Bonds. Он позволяет проводить de novo-дизайн и оптимизацию полимерных носителей для РНК.

Проблемы в разработке носителей РНК

Экспериментальный скрининг библиотек полимеров требует много времени и средств, а чисто вычислительные подходы до сих пор были ограничены из-за нехватки данных и высоких требований к вычислительным ресурсам.

Платформа Bits2Bonds устраняет этот разрыв, интегрируя крупнозернистое молекулярно-динамическое моделирование, имитирующее ключевые биологические процессы (например, связывание siRNA и взаимодействие с мембраной), с молекулярным дизайном на основе машинного обучения. Этот подход позволяет быстро провести виртуальный скрининг тысяч потенциальных молекул-носителей до экспериментальной проверки, что значительно ускоряет поиск эффективных и безопасных наноносителей для РНК.

Значение для персонализированной медицины

«Наша работа впервые демонстрирует, что комбинация физического моделирования и оптимизации на основе данных может эффективно направлять открытие совершенно новых материалов для РНК-терапии», — говорит Оливия Меркель.

«Этот метод прокладывает путь к более рациональному, высокопроизводительному дизайну полимерных систем доставки, приближая нас к персонализированной РНК-медицине».

Команда подтвердила свои вычислительные прогнозы, синтезировав и экспериментально протестировав несколько кандидатных полимеров для доставки siRNA. Результаты подтвердили сильную корреляцию между смоделированной эффективностью и биологической активностью.

Созданный конвейер является модульным и может быть адаптирован для других типов полимеров или нуклеиновых кислот, таких как мРНК или терапии на основе CRISPR.

Больше информации: Felix Sieber-Schäfer et al, From Bits to Bonds: High-Throughput Virtual Screening of Ribonucleic Acid Nanocarriers Using a Combinatorial Approach of Machine Learning and Molecular Dynamics, Journal of the American Chemical Society (2025). DOI: 10.1021/jacs.5c12694

Источник: Ludwig Maximilian University of Munich

ИИ: Это важный шаг в рациональном дизайне лекарств, который может значительно сократить время и стоимость разработки новых терапевтических средств, особенно в области генной терапии и персонализированной медицины. Интеграция моделирования и ИИ становится стандартом в фармацевтических исследованиях.

Подписаться на обновления Новости / Наука
Зарегистрируйтесь на сайте, чтобы отключить рекламу

ℹ️ Помощь от ИИ

В статье есть ошибки или у вас есть вопрос? Попробуйте спросить нашего ИИ-помощника в комментариях и он постарается помочь!

⚠️ Важно:

• AI Rutab читает ваши комментарии и готов вам помочь.
• Просто задайте вопрос 👍
• ИИ может давать неточные ответы!
• ИИ не скажет «Я не знаю», но вместо этого может дать ошибочный ответ.
• Всегда проверяйте информацию и не полагайтесь на него как на единственный источник.
• К ИИ-помощнику можно обратиться по имени Rutab или Рутаб.

Топ дня 🌶️


0 комментариев

Оставить комментарий


Все комментарии - Наука