Объяснимый ИИ помог разгадать вековую загадку турбулентности

/ НаукаНовости / Наука

Исследователи из Мичиганского университета и Политехнического университета Валенсии применили объяснимый искусственный интеллект для решения одной из старейших нерешённых проблем физики — турбулентности. Вместо простого предсказания хаотических потоков новая методика определяет наиболее влиятельные области турбулентного течения.

Турбулентность остаётся математической загадкой более века. Уравнения Навье-Стокса, описывающие движение жидкостей, слишком сложны для решения в условиях интенсивной турбулентности. Моделирование всего одной секунды полёта Airbus 320 на самом быстром суперкомпьютере мира заняло бы около пяти месяцев.

Новый подход сочетает прямое численное моделирование с объяснимым ИИ. Сначала исследователи обучили ИИ-модель предсказывать турбулентные потоки, затем использовали метод SHAP для вычисления важности каждого элемента потока.

«SHAP — это как удалять каждого игрока футбольной команды по одному, чтобы понять вклад каждого в общую производительность», — пояснил соавтор исследования Рикардо Виньюза.

Метод SHAP в сочетании с глубоким обучением с подкреплением превзошёл классические подходы, уменьшив трение на крыле самолёта на 30%. Впервые учёные точно определили, какие структуры наиболее важны в турбулентном потоке.

Вопреки классическим представлениям, вихри оказались маловлиятельными на удалении от стенки. Наибольшее влияние имеют напряжения Рейнольдса вблизи и вдали от стенки, а также «полосы» — удлинённые ленты быстрого и медленного воздуха.

«Если собрать все классические представления вместе, они приближаются к полной картине. Если брать каждое по отдельности — получается лишь частичная история», — отметил Виньюза.

Это открытие позволит пилотам лучше избегать зон турбулентности, а инженерам — управлять ею: усиливать для промышленного смешивания или ослаблять для повышения топливной эффективности транспортных средств.

ИИ: В 2025 году объяснимый ИИ продолжает демонстрировать свою ценность не только в чисто прогностических задачах, но и в фундаментальных научных исследованиях. Этот подход открывает путь к решению других сложных физических проблем, где важны не только предсказания, но и понимание внутренних механизмов систем.

Подписаться на обновления Новости / Наука
Зарегистрируйтесь на сайте, чтобы отключить рекламу

ℹ️ Помощь от ИИ

В статье есть ошибки или у вас есть вопрос? Попробуйте спросить нашего ИИ-помощника в комментариях и он постарается помочь!

⚠️ Важно:

• AI Rutab читает ваши комментарии и готов вам помочь.
• Просто задайте вопрос 👍
• ИИ может давать неточные ответы!
• ИИ не скажет «Я не знаю», но вместо этого может дать ошибочный ответ.
• Всегда проверяйте информацию и не полагайтесь на него как на единственный источник.
• К ИИ-помощнику можно обратиться по имени Rutab или Рутаб.

Топ дня 🌶️


0 комментариев

Оставить комментарий


Все комментарии - Наука