Квантовый сенсор на основе алмазов в 40 раз чувствительнее аналогов

/ НаукаНовости / Наука

Исследователи из Принстонского университета под руководством Натали де Леон разработали новый метод квантового зондирования, основанный на запутанных точечных дефектах в искусственных алмазах. Технология позволяет измерять явления, недоступные для современного оборудования, и открывает новые возможности для изучения физики конденсированного состояния.

В статье, опубликованной 27 ноября в журнале Nature, команда сообщила о создании сенсора с примерно 40-кратным превосходством в чувствительности по сравнению с предыдущими методами.

«У вас появляется совершенно новая игровая площадка», — сказала де Леон, доцент кафедры электротехники и вычислительной техники. — «Вы просто не можете увидеть эти вещи традиционными методами».

Новый подход к изучению реальных материалов

Техника основана на создании пар дефектов вблизи поверхности искусственного алмаза размером с крупную кристаллическую соль. Эти дефекты, представляющие собой отсутствие одного атома в решетке из миллиардов, сильно взаимодействуют с магнитными полями и могут быть точно сконструированы.

Ключевым прорывом стало размещение двух дефектов на расстоянии около 10 нанометров друг от друга, что позволило им вступить в квантовое запутывание.

«Это совершенно новый способ работы с квантовым сенсором, который позволяет исследовать то, что раньше было невозможно», — отметил Филип Ким, экспериментальный физик из Гарварда, не участвовавший в исследовании.

Квантовая запутанность выявляет сигналы в шуме

Для создания сенсора исследователи обстреливали алмаз молекулами азота, движущимися со скоростью более 30 тысяч футов в секунду. При столкновении молекулы распадались, и два атома азота проникали в кристаллическую структуру на глубину около 20 нанометров.

Запутывание электронов в этих атомах позволило сенсору «триангулировать» сигналы в магнитных флуктуациях и эффективно определять их источник. Этот диапазон размеров между атомным масштабом и длиной волны видимого света особенно важен для изучения таких явлений, как движение электронов в материалах или эволюция магнитных вихрей в сверхпроводниках.

Слабость сенсора стала квантовым преимуществом

Прорывная идея принадлежит Джареду Ровни, который начал работать с де Леон в 2020 году. Во время пандемии COVID-19 они занялись теоретическим исследованием магнитного шума и возможностей его корреляционного анализа.

«Тогда это был просто странный COVID-теоретический проект», — вспоминает де Леон. — «Только начав формализацию, мы осознали, насколько это мощно».

Ровни, имеющий опыт работы с ядерным магнитным резонансом (ЯМР), понял, что запутывание центров вакансий азота позволяет обойти самые сложные технические проблемы и получить преимущество двух сенсоров по цене одного.

«Теперь мне нужно сделать всего одно измерение», — сказала де Леон, — «одно обычное измерение».

Дополнительная информация: Nathalie Leon, Multi-qubit nanoscale sensing with entanglement as a resource, Nature (2025). DOI: 10.1038/s41586-025-09760-y

Подписаться на обновления Новости / Наука
Зарегистрируйтесь на сайте, чтобы отключить рекламу

ℹ️ Помощь от ИИ

В статье есть ошибки или у вас есть вопрос? Попробуйте спросить нашего ИИ-помощника в комментариях и он постарается помочь!

⚠️ Важно:

• AI Rutab читает ваши комментарии и готов вам помочь.
• Просто задайте вопрос 👍
• ИИ может давать неточные ответы!
• ИИ не скажет «Я не знаю», но вместо этого может дать ошибочный ответ.
• Всегда проверяйте информацию и не полагайтесь на него как на единственный источник.
• К ИИ-помощнику можно обратиться по имени Rutab или Рутаб.

Топ дня 🌶️


0 комментариев

Оставить комментарий


Все комментарии - Наука