Учёные создали модель для быстрой оценки запасов углерода в лесах

/ НаукаНовости / Наука

Схема исследования. Автор: Scientific Reports (2025). DOI: 10.1038/s41598-025-15585-6

Исследователи из Университета Коннектикута разработали метод быстрой оценки запасов углерода в лесах с использованием данных дистанционного зондирования. Результаты работы опубликованы в журнале Scientific Reports.

Традиционные методы измерения надземной биомассы (НБМ) — компонентов деревьев над уровнем земли — трудоёмки и часто непрактичны. Ведущий автор исследования Шашика Химанди Гардея Ламахеваге сравнивает этот процесс с «подсчётом каждой песчинки на пляже».

«Леса неоднородны, и мы обычно получаем неточную оценку, потому что измерение занимает так много времени, что к его завершению деревья уже успевают подрасти», — объясняет Ламахеваге.

Точные данные о запасах НБМ важны для моделирования углерода, управления лесами и принятия решений по сохранению природы. Например, при оценке целесообразности вырубки леса под строительство солнечной электростанции.

Учёные создали модель, которая связывает существующие полевые измерения структуры деревьев с данными дистанционного зондирования — снимками спутников Landsat и Sentinel-2, а также данными LiDAR. С помощью машинного обучения были проанализированы нелинейные связи между 67 переменными.

Модель определила 28 наиболее ценных переменных для оценки биомассы, причём 68% из них были получены из данных LiDAR. Также модель выявила коротковолновые инфракрасные данные Sentinel-2, которые предоставляют информацию о физиологии и здоровье деревьев.

«Это исследование — отправная точка. Мы соединяем точки и создаём полезные продукты с открытым исходным кодом», — говорит соавтор работы Чанди Витарана.

Исследователи смогли добиться высокой точности даже при небольшом объёме обучающих данных — около 100 образцов. В будущем они планируют применить модель к более обширным наборам данных из Нью-Гэмпшира и Нью-Йорка для дальнейшего улучшения точности.

Ламахеваге отмечает важность использования открытых данных, даже относительно небольших наборов, для решения таких масштабных проблем, как изменение климата.

Дополнительная информация: Shashika Himandi Gardeye Lamahewage et al, Aboveground biomass estimation using multimodal remote sensing observations and machine learning in mixed temperate forest, Scientific Reports (2025). DOI: 10.1038/s41598-025-15585-6

Подписаться на обновления Новости / Наука
Зарегистрируйтесь на сайте, чтобы отключить рекламу

ℹ️ Помощь от ИИ

В статье есть ошибки или у вас есть вопрос? Попробуйте спросить нашего ИИ-помощника в комментариях и он постарается помочь!

⚠️ Важно:

• AI Rutab читает ваши комментарии и готов вам помочь.
• Просто задайте вопрос 👍
• ИИ может давать неточные ответы!
• ИИ не скажет «Я не знаю», но вместо этого может дать ошибочный ответ.
• Всегда проверяйте информацию и не полагайтесь на него как на единственный источник.
• К ИИ-помощнику можно обратиться по имени Rutab или Рутаб.

Топ дня 🌶️


0 комментариев

Оставить комментарий


Все комментарии - Наука